4 research outputs found

    Observed time difference of arrival based position estimation for LTE systems: simulation framework and performance evaluation

    Get PDF
    Precise user equipment (UE) location is paramount for the reliable operation of location-based services provided by mobile network operators and other emerging applications. In this paper, the Long Term Evolution (LTE) network positioning performance based on mobile assist Observed Time Difference of Arrival (OTDoA) method is considered. The received signal time difference (RSTD) measurements are estimated by the UE using dedicated position reference signal (PRS) transmitted in the downlink frame where the reported time measurements are used by the network for location calculation. A simulation framework for the position estimation in LTE networks is presented where the LTE downlink communication link is implemented. The correlation-based method for the time of arrival measurement is used for the implementation of OTDoA. The simulation framework provides different configurations and adjustments for the system and network parameters for evaluating the performance of LTE positioning using OTDoA over multipath fading channels. Different simulation scenarios are conducted to identify the influence of various parameters of LTE system and positioning procedure setup on the positioning accuracy. Simulation results demonstrated that the positioning accuracy is highly affected by the channel fading condition where the accuracy of time of arrival measurements is deteriorated in severe fading environments; however, the positioning accuracy can be significantly improved by increasing the positioning sequences involved in the estimation process either in the frequency domain or in the time domain

    Observed time difference of arrival based position estimation for LTE systems: simulation framework and performance evaluation

    Get PDF
    Precise user equipment (UE) location is paramount for the reliable operation of location-based services provided by mobile network operators and other emerging applications. In this paper, the Long Term Evolution (LTE) network positioning performance based on mobile assist Observed Time Difference of Arrival (OTDoA) method is considered. The received signal time difference (RSTD) measurements are estimated by the UE using dedicated position reference signal (PRS) transmitted in the downlink frame where the reported time measurements are used by the network for location calculation. A simulation framework for the position estimation in LTE networks is presented where the LTE downlink communication link is implemented. The correlation-based method for the time of arrival measurement is used for the implementation of OTDoA. The simulation framework provides different configurations and adjustments for the system and network parameters for evaluating the performance of LTE positioning using OTDoA over multipath fading channels. Different simulation scenarios are conducted to identify the influence of various parameters of LTE system and positioning procedure setup on the positioning accuracy. Simulation results demonstrated that the positioning accuracy is highly affected by the channel fading condition where the accuracy of time of arrival measurements is deteriorated in severe fading environments; however, the positioning accuracy can be significantly improved by increasing the positioning sequences involved in the estimation process either in the frequency domain or in the time domain

    Synchronization algorithms and architectures for wireless OFDM systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation technique that has become a viable method for wireless communication systems due to the high spectral efficiency, immunity to multipath distortion, and being flexible to integrate with other techniques. However, the high-peak-to-average power ratio and sensitivity to synchronization errors are the major drawbacks for OFDM systems. The algorithms and architectures for symbol timing and frequency synchronization have been addressed in this thesis because of their critical requirements in the development and implementation of wireless OFDM systems. For the frequency synchronization, two efficient carrier frequency offset (CFO) estimation methods based on the power and phase difference measurements between the subcarriers in consecutive OFDM symbols have been presented and the power difference measurement technique is mapped onto reconfigurable hardware architecture. The performance of the considered CFO estimators is investigated in the presence of timing uncertainty conditions. The power difference measurements approach is further investigated for timing synchronization in OFDM systems with constant modulus constellation. A new symbol timing estimator has been proposed by measuring the power difference either between adjacent subcarriers or the same subcarrier in consecutive OFDM symbols. The proposed timing metric has been realized in feedforward and feedback configurations, and different implementation strategies have been considered to enhance the performance and reduce the complexity. Recently, multiple-input multiple-output (MIMO) wireless communication systems have received considerable attention. Therefore, the proposed algorithms have also been extended for timing recovery and frequency synchronization in MIMO-OFDM systems. Unlike other techniques, the proposed timing and frequency synchronization architectures are totally blind in the sense that they do not require any information about the transmitted data, the channel state or the signal-to-noise-ratio (SNR). The proposed frequency synchronization architecture has low complexity because it can be implemented efficiently using the three points parameter estimation approach. The simulation results confirmed that the proposed algorithms provide accurate estimates for the synchronization parameters using a short observation window. In addition, the proposed synchronization techniques have demonstrated robust performance over frequency selective fading channels that significantly outperform other well-established methods which will in turn benefit the overall OFDM system performance. Furthermore, an architectural exploration for mapping the proposed frequency synchronization algorithm, in particular the CFO estimation based on the power difference measurements, on reconfigurable computing architecture has been investigated. The proposed reconfigurable parallel and multiplexed-stream architectures with different implementation alternatives have been simulated, verified and compared for field programmable gate array (FPGA) implementation using the Xilinx’s DSP design flow.EThOS - Electronic Theses Online ServiceMinistry of Higher Education and Scientific Research (MOHSR) of IraqGBUnited Kingdo

    Observed TIME Difference of Arrival Based Position Estimation for LTE Systems: Simulation Framework and Performance Evaluation

    Full text link
    Precise user equipment (UE) location is paramount for the reliable operation of location-based services provided by mobile network operators and other emerging applications. In this paper, the Long Term Evolution (LTE) network positioning performance based on mobile assist Observed Time Difference of Arrival (OTDoA) method is considered. The received signal time difference (RSTD) measurements are estimated by the UE using dedicated position reference signal (PRS) transmitted in the downlink frame where the reported time measurements are used by the network for location calculation. A simulation framework for the position estimation in LTE networks is presented where the LTE downlink communication link is implemented. The correlation-based method for the time of arrival measurement is used for the implementation of OTDoA. The simulation framework provides different configurations and adjustments for the system and network parameters for evaluating the performance of LTE positioning using OTDoA over multipath fading channels. Different simulation scenarios are conducted to identify the influence of various parameters of LTE system and positioning procedure setup on the positioning accuracy. Simulation results demonstrated that the positioning accuracy is highly affected by the channel fading condition where the accuracy of time of arrival measurements is deteriorated in severe fading environments; however, the positioning accuracy can be significantly improved by increasing the positioning sequences involved in the estimation process either in the frequency domain or in the time domain
    corecore